怎么解?步骤详细点!
是数学学习中常见的一类问题,主要涉及含有分数的方程求解,这类题目不仅考验学生对分数运算的掌握,还锻炼其对方程解法的灵活运用能力,以下是关于分数解方程题目的详细解析,包括常见类型、解题步骤及示例分析。 通常分为两类:一是方程中含有分数系数,二是方程中含有分母,对于前者,可以通过去分母或通分将分数转化为整数系数;后者则需要先找到最简公分母,消去分母后再求解,解方程 (\frac{x}{2} + \frac{x}{3} = 5) 时,最简公分母为6,两边同乘6得 (3x + 2x = 30),合并同类项后解得 (x = 6),这一过程中,通分和去分母是关键步骤,需确保每一步的等价性。
在处理更复杂的分数方程时,可能需要先进行分式的化简,解方程 (\frac{1}{x-1} + \frac{1}{x+1} = \frac{2}{x^2-1}) 时,注意到 (x^2-1 = (x-1)(x+1)),最简公分母为 ((x-1)(x+1)),两边同乘后得 ((x+1) + (x-1) = 2),化简为 (2x = 2),解得 (x = 1),但需注意,(x = 1) 会使原方程分母为零,因此为增根,原方程无解,这提示我们在解分式方程时,必须检验解的有效性。
对于含有多个分数的方程,可以逐步消去分母,解方程 (\frac{x}{3} - \frac{x-1}{4} = 1) 时,最简公分母为12,两边同乘12得 (4x - 3(x-1) = 12),展开后为 (4x - 3x + 3 = 12),解得 (x = 9),检验代入原方程,(\frac{9}{3} - \frac{8}{4} = 3 - 2 = 1),等式成立,(x = 9) 是有效解。
在分数解方程中,还需注意符号的处理,解方程 (\frac{x}{2} - \frac{x-1}{3} = -1) 时,最简公分母为6,两边同乘6得 (3x - 2(x-1) = -6),展开后为 (3x - 2x + 2 = -6),解得 (x = -8),检验代入原方程,(\frac{-8}{2} - \frac{-9}{3} = -4 + 3 = -1),等式成立,(x = -8) 是正确解。
为了更直观地展示解题步骤,以下通过表格对比两个典型分数方程的解法:
方程 | 解题步骤 | 解 |
---|---|---|
(\frac{x}{2} + \frac{x}{3} = 5) | 最简公分母为6; 两边同乘6得 (3x + 2x = 30); 合并得 (5x = 30); 解得 (x = 6)。 |
(x = 6) |
(\frac{1}{x-1} + \frac{1}{x+1} = \frac{2}{x^2-1}) | 最简公分母为 ((x-1)(x+1)); 两边同乘得 ((x+1) + (x-1) = 2); 化简得 (2x = 2); 解得 (x = 1)(检验为增根)。 |
无解 |
通过以上分析可以看出,分数解方程的核心在于合理消去分母,并注意检验解的有效性,掌握通分、去分母及分式化简的技巧,是解决这类问题的关键。
相关问答FAQs
-
问:解分式方程时,为什么必须检验解的有效性?
答: 因为在去分母的过程中,可能会引入使原方程分母为零的解(增根),解方程 (\frac{1}{x-2} = \frac{3}{x-2}) 时,去分母得 (1 = 3),无解;但如果解得 (x = 2),则需检验发现其为增根,因此原方程无解,检验可以确保解的正确性。 -
问:如何快速找到分式方程的最简公分母?
答: 最简公分母是各分母所有因式的最高次幂的乘积,方程 (\frac{1}{x^2-4} + \frac{1}{x-2} = 1) 中,分母分别为 (x^2-4 = (x-2)(x+2)) 和 (x-2),因此最简公分母为 ((x-2)(x+2)),分解因式后,取各分母的独有因式和共有因式的最高次幂即可。
版权声明:本文由 数字独教育 发布,如需转载请注明出处。