当前位置:首页 > 学习资源 > 分数方程计算题及答案怎么找?有没有详细步骤解析?

分数方程计算题及答案怎么找?有没有详细步骤解析?

shiwaishuzidu2025年11月18日 14:42:41学习资源4

分数方程计算题是数学学习中常见的一类问题,它涉及分数的运算、方程的解法等知识点,需要学生掌握分数的基本性质、通分、约分以及等式的性质等,下面将通过具体的例题来详细讲解分数方程的计算方法,并提供详细的解题步骤和答案。

分数方程计算题及详解

例题1:解方程 (\frac{x}{3} + \frac{x}{4} = 7)

解题步骤:

  1. 确定最简公分母:方程中的分母分别是3和4,它们的最小公倍数是12,因此最简公分母为12。

  2. 两边同乘最简公分母:将方程两边同时乘以12,消去分母: [ 12 \times \left( \frac{x}{3} + \frac{x}{4} \right) = 12 \times 7 ] 展开后得到: [ 12 \times \frac{x}{3} + 12 \times \frac{x}{4} = 84 ] 计算后得到: [ 4x + 3x = 84 ]

  3. 合并同类项:将左边的同类项合并: [ 7x = 84 ]

  4. 解方程:两边同时除以7: [ x = \frac{84}{7} = 12 ]

答案:(x = 12)

例题2:解方程 (\frac{2}{x} - \frac{3}{x+1} = \frac{1}{12})

解题步骤:

  1. 确定最简公分母:方程中的分母分别是(x)、(x+1)和12,因此最简公分母为(12x(x+1))。

  2. 两边同乘最简公分母:将方程两边同时乘以(12x(x+1)): [ 12x(x+1) \times \left( \frac{2}{x} - \frac{3}{x+1} \right) = 12x(x+1) \times \frac{1}{12} ] 展开后得到: [ 12(x+1) \times 2 - 12x \times 3 = x(x+1) ] 计算后得到: [ 24(x+1) - 36x = x^2 + x ] 进一步展开: [ 24x + 24 - 36x = x^2 + x ] 合并同类项: [ -12x + 24 = x^2 + x ]

  3. 整理为标准二次方程形式:将所有项移到方程左边: [ x^2 + x + 12x - 24 = 0 ] 合并同类项: [ x^2 + 13x - 24 = 0 ]

  4. 解二次方程:使用求根公式: [ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} ] a = 1),(b = 13),(c = -24),代入得: [ x = \frac{-13 \pm \sqrt{13^2 - 4 \times 1 \times (-24)}}{2 \times 1} = \frac{-13 \pm \sqrt{169 + 96}}{2} = \frac{-13 \pm \sqrt{265}}{2} ] 由于(\sqrt{265})无法进一步化简,因此方程的解为: [ x = \frac{-13 + \sqrt{265}}{2} \quad \text{或} \quad x = \frac{-13 - \sqrt{265}}{2} ]

答案:(x = \frac{-13 \pm \sqrt{265}}{2})

例题3:解方程 (\frac{1}{x-2} + \frac{1}{x+2} = \frac{4}{x^2 - 4})

解题步骤:

  1. 观察分母:注意到(x^2 - 4 = (x-2)(x+2)),因此最简公分母为((x-2)(x+2))。

  2. 两边同乘最简公分母: [ (x-2)(x+2) \times \left( \frac{1}{x-2} + \frac{1}{x+2} \right) = (x-2)(x+2) \times \frac{4}{x^2 - 4} ] 展开后得到: [ (x+2) + (x-2) = 4 ] 合并同类项: [ 2x = 4 ]

  3. 解方程: [ x = 2 ]

  4. 检验增根:将(x = 2)代入原方程的分母,发现(x-2 = 0),分母为零,x = 2)是增根,应舍去。

答案:原方程无解。

分数方程计算技巧总结

  1. 确定最简公分母:解分数方程时,首先需要找到所有分母的最简公分母,以便消去分母。
  2. 注意增根:在解方程过程中,可能会产生使分母为零的解,这些解是增根,需要舍去。
  3. 整理方程:消去分母后,需要将方程整理为标准形式(如一次方程或二次方程),再进行求解。
  4. 检验结果:解完方程后,应将解代入原方程检验,确保分母不为零且等式成立。

相关问答FAQs

问题1:解分数方程时如何确定最简公分母?

解答:确定最简公分母的步骤如下:

  1. 将所有分母分解因式(如果可以分解)。
  2. 取每个因式的最高次幂,所有因式的乘积即为最简公分母,对于分母(x)、(x+1)和12,最简公分母为(12x(x+1))。

问题2:为什么解分数方程时会产生增根?如何避免?

解答:增根是指在解方程过程中,通过两边同乘一个含有未知数的式子(如最简公分母)而引入的使原方程分母为零的解,避免增根的方法包括:

  1. 在解方程前,先确定未知数的取值范围(即使分母不为零的值)。
  2. 解完方程后,将解代入原方程检验,若使分母为零,则为增根,应舍去。

版权声明:本文由 数字独教育 发布,如需转载请注明出处。

本文链接:https://www.shuzidu.com/xuexiziyuan/30723.html

分享给朋友:

“分数方程计算题及答案怎么找?有没有详细步骤解析?” 的相关文章

前滚翻教案

前滚翻教案

教学目标 知识与技能目标:学生能够准确说出前滚翻的动作要领,理解其在运动中的作用,如在摔倒时可用于自我保护等,大部分学生能独立完成标准的前滚翻动作,动作协调、连贯,滚动圆滑。 过程与方法目标:通过观察、模仿、练习,培养学生的身体协调...

小班数学教案

小班数学教案

《小班数学教案》 教学目标 引导幼儿认识数字1、2、3,理解其实际意义。 通过操作活动,让幼儿学会按数量取物,能手口一致地点数3以内的物体。 培养幼儿对数学活动的兴趣,体验数学在生活中的应用。 教学重难点 重点 帮...

交通安全教育教案

交通安全教育教案

教学目标 让学生充分认识交通安全的重要性,增强交通安全意识。 帮助学生了解常见的交通标志、标线的含义及交通规则。 引导学生掌握正确的步行、乘车、骑车等交通安全常识与技能,培养学生遵守交通法规的良好习惯。 教学重难点 重...

观后感600字

观后感600字

《[影片名称]》观后感 回顾 《[影片名称]》以其独特的叙事手法和精彩的剧情吸引了观众的目光,故事围绕着[主要人物及核心事件]展开,从[开头情境]逐渐推进到[关键冲突点],再到最后的[结局呈现],整个过程跌宕起伏,扣人心弦。 在影片中...

观后感800字

观后感800字

与背景 在观影的初始,便被影片独特的氛围所吸引,这部影片[影片名称]以其精良的制作、扣人心弦的剧情以及深刻的内涵,在众多影视作品中脱颖而出,它由[导演姓名]执导,汇聚了一众实力派演员,从前期的宣传就备受瞩目,无论是大制作的特效场景,还是细...

表彰通报范文

表彰通报范文

关于表彰[具体姓名]同志的通报 表彰背景与目的 在公司近期开展的[具体项目名称]中,全体员工齐心协力、攻坚克难,为项目的顺利推进付出了巨大努力,[具体姓名]同志表现尤为突出,展现出了卓越的专业素养、高度的责任心和无私的奉献精神,为了表彰...