当前位置:首页 > 学习资源 > 分母是21的最简真分数有几个?具体是哪几个?

分母是21的最简真分数有几个?具体是哪几个?

shiwaishuzidu2025年10月12日 23:01:46学习资源1

在数学中,最简真分数是指分子小于分母,且分子与分母互质的分数,当分母固定为21时,我们需要找出所有满足条件的分数,21的因数有1、3、7、21,只要分子不包含这些因数(即分子不被3或7整除),且分子小于21,就能构成最简真分数,以下是详细的推导过程和结果分析。

列出1到20的所有整数作为分子,并逐一检查其与21的最大公约数(GCD),如果GCD为1,则该分数为最简真分数,通过计算,符合条件的分子有:1、2、4、5、8、10、11、13、16、17、19、20,这些数均不被3或7整除,因此它们与21互质,1/21的GCD为1,而3/21的GCD为3,不符合条件,完整的分数列表如下表所示:

分子 分数 是否为最简真分数 理由
1 1/21 GCD(1,21)=1
2 2/21 GCD(2,21)=1
4 4/21 GCD(4,21)=1
5 5/21 GCD(5,21)=1
8 8/21 GCD(8,21)=1
10 10/21 GCD(10,21)=1
11 11/21 GCD(11,21)=1
13 13/21 GCD(13,21)=1
16 16/21 GCD(16,21)=1
17 17/21 GCD(17,21)=1
19 19/21 GCD(19,21)=1
20 20/21 GCD(20,21)=1

从表中可以看出,共有12个分母为21的最简真分数,这些分数的分布均匀,且在0到1之间形成了合理的间隔,1/21是最小的,而20/21是最大的,它们之间的差值反映了分子与分母的互质关系,这些分数在约分后无法进一步简化,因此它们代表了分母为21时的所有最简形式。

进一步分析,这些分数的分子可以看作是欧拉函数φ(21)的值,欧拉函数φ(n)表示小于n且与n互质的正整数的个数,对于21=3×7,φ(21)=21×(1-1/3)×(1-1/7)=21×(2/3)×(6/7)=12,这与我们列出的分数数量一致,这一结果验证了我们的推导过程,并展示了数论中欧拉函数的应用。

在实际应用中,最简真分数常用于分数的加减运算、概率计算以及比例分配等领域,在概率论中,如果事件有21种等可能的结果,那么其中12种结果的概率可以表示为上述最简真分数,在音乐理论中,音程的比例有时也会用这类分数来表示,以体现其和谐性。

分母为21的最简真分数共有12个,它们分别是1/21、2/21、4/21、5/21、8/21、10/21、11/21、13/21、16/21、17/21、19/21和20/21,这些分数不仅满足数学定义,还在实际中具有广泛的应用,通过欧拉函数的验证,我们进一步确认了这一结果的正确性,理解这些分数的性质和分布,有助于我们更好地掌握分数的基本概念及其在数学中的重要性。

相关问答FAQs

  1. 如何判断一个分数是否为最简真分数?
    答:判断一个分数是否为最简真分数需要满足两个条件:一是分子小于分母(即真分数),二是分子与分母的最大公约数为1(即最简分数),3/21不是最简分数,因为GCD(3,21)=3;而2/21是最简真分数,因为GCD(2,21)=1且2<21。

  2. 为什么分母为21的最简真分数有12个?
    答:这是因为欧拉函数φ(21)的值为12。φ(n)计算的是小于n且与n互质的正整数的个数,对于21=3×7,φ(21)=21×(1-1/3)×(1-1/7)=12,因此分母为21的最简真分数共有12个,这些分数的分子恰好是1到20中与21互质的数。

版权声明:本文由 数字独教育 发布,如需转载请注明出处。

本文链接:https://www.shuzidu.com/xuexiziyuan/18994.html

分享给朋友:

“分母是21的最简真分数有几个?具体是哪几个?” 的相关文章

手抄报设计

手抄报设计

手抄报设计指南 版面规划描述|占比| |----|----|----| |报头|手抄报的核心,包含主题相关的图案与标题文字,需醒目且契合主题,如环保主题可绘地球、绿树等元素,文字用艺术字体突出主题。|约 1/5 版面|围绕主题展开的主...

观后感300字

观后感300字

《[电影名称]》观后感 情节与主题 这部电影的情节跌宕起伏,扣人心弦,它以[简要描述核心情节]为主线,深刻探讨了[主题]这一重要议题,从主角的经历中,我看到了[阐述主题相关的感悟],它让我对生活和人性有了更深的思考。 角色塑造...

英语电影观后感

英语电影观后感

《肖申克的救赎》观后感 影片基本信息 《肖申克的救赎》是一部由弗兰克·德拉邦特执导,蒂姆·罗宾斯、摩根·弗里曼等主演的经典电影,影片改编自斯蒂芬·金的同名小说,于1994年上映,讲述了银行家安迪因被误判为枪杀妻子及其情人的罪名入狱后,不...

我不是药神观后感

我不是药神观后感

我不是药神》是一部由文牧野执导,徐峥、王传君、周一围等主演的现实主义电影,于2018年上映,影片以真实事件为蓝本,讲述了主人公程勇从一位落魄的保健品商贩转变为“药神”的故事,深刻揭示了医疗资源分配、法律与道德的冲突以及人性的复杂性,以下是详...

委托书范文

委托书范文

委托事项说明 委托人[委托人姓名],身份证号[委托人身份证号码],因个人原因无法亲自办理[具体事务]相关事宜,特全权委托受托人[受托人姓名],身份证号[受托人身份证号码]代为办理。 委托权限 代为提交资料:受托人有权向相关部门或机...

钢铁是怎样炼成的读后感200字

钢铁是怎样炼成的读后感200字

钢铁是怎样炼成的》这部小说通过保尔·柯察金的成长历程,展现了一个普通人在革命与逆境中锤炼成钢的艰辛过程,以下是对这本书的读后感: 人物塑造与成长 人物 性格特点 成长经历 保尔·柯察金 顽强、执着、勇...