当前位置:首页 > 学习资源 > 分数比大小50道,如何快速掌握比较技巧?

分数比大小50道,如何快速掌握比较技巧?

shiwaishuzidu2025年10月30日 20:46:24学习资源125

,掌握正确的方法不仅能提高计算效率,还能为后续的分数运算打下坚实基础,以下是关于分数比大小的详细方法解析及练习题,帮助系统掌握这一知识点。

分数比大小的基本方法

比较分数大小通常有以下几种方法,根据分数的特点灵活选择:

  1. 同分母比较法
    当两个分数的分母相同时,分子大的分数值就大。$\frac{3}{7}$和$\frac{5}{7}$,因为3<5,\frac{3}{7}<\frac{5}{7}$。
    原理:分母相同意味着分数单位相同,分子代表分数单位的个数,个数越多,分数值越大。

  2. 同分子比较法
    当两个分数的分子相同时,分母小的分数值大。$\frac{2}{5}$和$\frac{2}{9}$,因为5<9,\frac{2}{5}>\frac{2}{9}$。
    原理:分子相同意味着分数单位的个数相同,分母越小,分数单位越大,整体分数值越大。

  3. 交叉相乘法
    对于分子、分母均不相同的分数,可采用交叉相乘比较,设$\frac{a}{b}$和$\frac{c}{d}$,若$a \times d > b \times c$,则$\frac{a}{b}>\frac{c}{d}$,比较$\frac{3}{4}$和$\frac{2}{5}$,$3×5=15$,$4×2=8$,因为15>8,\frac{3}{4}>\frac{2}{5}$。
    原理:通过通分将比较转化为整数比较,适用于所有分数,无需计算最小公倍数。

  4. 与1(或0)比较法
    当分数接近1或0时,可通过与1的差值判断大小。$\frac{7}{8}$和$\frac{8}{9}$,$\frac{7}{8}=1-\frac{1}{8}$,$\frac{8}{9}=1-\frac{1}{9}$,因为$\frac{1}{8}>\frac{1}{9}$,1-\frac{1}{8}<1-\frac{1}{9}$,即$\frac{7}{8}<\frac{8}{9}$。

  5. 化成小数比较法
    将分数化为小数后直接比较。$\frac{3}{5}=0.6$,$\frac{7}{12}≈0.583$,因为0.6>0.583,\frac{3}{5}>\frac{7}{12}$。
    适用场景:分母是2、4、5、8、10等易化成有限小数的情况。

分数比大小练习题(50道)

以下为50道分数比大小练习题,涵盖不同难度和方法,供练习使用:

序号 题目 答案(用“>”“<”“=”连接) 序号 题目 答案(用“>”“<”“=”连接)
1 $\frac{2}{5}$和$\frac{3}{5}$ $\frac{2}{5}<\frac{3}{5}$ 26 $\frac{5}{6}$和$\frac{7}{8}$ $\frac{5}{6}<\frac{7}{8}$
2 $\frac{4}{9}$和$\frac{4}{11}$ $\frac{4}{9}>\frac{4}{11}$ 27 $\frac{11}{12}$和$\frac{13}{15}$ $\frac{11}{12}>\frac{13}{15}$
3 $\frac{7}{12}$和$\frac{5}{12}$ $\frac{7}{12}>\frac{5}{12}$ 28 $\frac{3}{7}$和$\frac{5}{14}$ $\frac{3}{7}>\frac{5}{14}$
4 $\frac{8}{15}$和$\frac{8}{17}$ $\frac{8}{15}>\frac{8}{17}$ 29 $\frac{9}{16}$和$\frac{11}{20}$ $\frac{9}{16}>\frac{11}{20}$
5 $\frac{1}{3}$和$\frac{1}{4}$ $\frac{1}{3}>\frac{1}{4}$ 30 $\frac{7}{18}$和$\frac{5}{12}$ $\frac{7}{18}<\frac{5}{12}$
6 $\frac{5}{8}$和$\frac{3}{8}$ $\frac{5}{8}>\frac{3}{8}$ 31 $\frac{2}{3}$和$\frac{3}{4}$ $\frac{2}{3}<\frac{3}{4}$
7 $\frac{6}{11}$和$\frac{6}{13}$ $\frac{6}{11}>\frac{6}{13}$ 32 $\frac{4}{5}$和$\frac{5}{6}$ $\frac{4}{5}<\frac{5}{6}$
8 $\frac{3}{10}$和$\frac{7}{10}$ $\frac{3}{10}<\frac{7}{10}$ 33 $\frac{8}{9}$和$\frac{9}{10}$ $\frac{8}{9}<\frac{9}{10}$
9 $\frac{9}{16}$和$\frac{9}{20}$ $\frac{9}{16}>\frac{9}{20}$ 34 $\frac{5}{7}$和$\frac{7}{9}$ $\frac{5}{7}<\frac{7}{9}$
10 $\frac{2}{7}$和$\frac{2}{9}$ $\frac{2}{7}>\frac{2}{9}$ 35 $\frac{11}{13}$和$\frac{13}{15}$ $\frac{11}{13}<\frac{13}{15}$
11 $\frac{5}{6}$和$\frac{5}{6}$ $\frac{5}{6}=\frac{5}{6}$ 36 $\frac{3}{8}$和$\frac{5}{12}$ $\frac{3}{8}<\frac{5}{12}$
12 $\frac{7}{15}$和$\frac{2}{15}$ $\frac{7}{15}>\frac{2}{15}$ 37 $\frac{4}{9}$和$\frac{7}{18}$ $\frac{4}{9}>\frac{7}{18}$
13 $\frac{1}{2}$和$\frac{2}{3}$ $\frac{1}{2}<\frac{2}{3}$ 38 $\frac{5}{11}$和$\frac{7}{15}$ $\frac{5}{11}>\frac{7}{15}$
14 $\frac{3}{4}$和$\frac{5}{6}$ $\frac{3}{4}<\frac{5}{6}$ 39 $\frac{8}{13}$和$\frac{11}{17}$ $\frac{8}{13}>\frac{11}{17}$
15 $\frac{4}{7}$和$\frac{5}{9}$ $\frac{4}{7}<\frac{5}{9}$ 40 $\frac{9}{14}$和$\frac{11}{16}$ $\frac{9}{14}<\frac{11}{16}$
16 $\frac{5}{12}$和$\frac{7}{15}$ $\frac{5}{12}<\frac{7}{15}$ 41 $\frac{7}{10}$和$\frac{10}{13}$ $\frac{7}{10}<\frac{10}{13}$
17 $\frac{2}{5}$和$\frac{3}{8}$ $\frac{2}{5}<\frac{3}{8}$ 42 $\frac{3}{5}$和$\frac{5}{8}$ $\frac{3}{5}<\frac{5}{8}$
18 $\frac{7}{10}$和$\frac{3}{4}$ $\frac{7}{10}<\frac{3}{4}$ 43 $\frac{4}{7}$和$\frac{6}{11}$ $\frac{4}{7}>\frac{6}{11}$
19 $\frac{5}{9}$和$\frac{7}{12}$ $\frac{5}{9}<\frac{7}{12}$ 44 $\frac{8}{15}$和$\frac{11}{20}$ $\frac{8}{15}>\frac{11}{20}$
20 $\frac{11}{18}$和$\frac{13}{24}$ $\frac{11}{18}>\frac{13}{24}$ 45 $\frac{5}{13}$和$\frac{7}{18}$ $\frac{5}{13}<\frac{7}{18}$
21 $\frac{3}{5}$和$\frac{7}{10}$ $\frac{3}{5}<\frac{7}{10}$ 46 $\frac{9}{16}$和$\frac{12}{25}$ $\frac{9}{16}>\frac{12}{25}$
22 $\frac{2}{3}$和$\frac{5}{7}$ $\frac{2}{3}<\frac{5}{7}$ 47 $\frac{7}{12}$和$\frac{9}{16}$ $\frac{7}{12}<\frac{9}{16}$
23 $\frac{4}{5}$和$\frac{9}{11}$ $\frac{4}{5}>\frac{9}{11}$ 48 $\frac{11}{15}$和$\frac{17}{23}$ $\frac{11}{15}>\frac{17}{23}$
24 $\frac{5}{8}$和$\frac{11}{16}$ $\frac{5}{8}=\frac{10}{16}<\frac{11}{16}$ 49 $\frac{13}{20}$和$\frac{19}{30}$ $\frac{13}{20}=\frac{39}{60}>\frac{38}{60}=\frac{19}{30}$
25 $\frac{7}{12}$和$\frac{14}{24}$ $\frac{7}{12}=\frac{14}{24}$ 50 $\frac{5}{7}$和$\frac{25}{35}$ $\frac{5}{7}=\frac{25}{35}$

相关问答FAQs

问题1:当分数的分子和分母都比较大时,如何快速比较大小?
解答:对于分子、分母较大的分数(如$\frac{17}{32}$和$\frac{19}{38}$),优先采用交叉相乘法,避免通分带来的复杂计算。$17×38=646$,$32×19=608$,因为646>608,\frac{17}{32}>\frac{19}{38}$,可观察分数是否接近$\frac{1}{2}$、1等特殊值,通过估算简化比较。

问题2:比较带分数的大小时,需要注意什么?
解答:比较带分数时,先比较整数部分,整数部分大的带分数大;若整数部分相同,再比较分数部分。$3\frac{1}{4}$和$2\frac{7}{8}$,整数部分3>2,3\frac{1}{4}>2\frac{7}{8}$;再如$5\frac{2}{3}$和$5\frac{3}{4}$,整数部分相同,比较$\frac{2}{3}$和$\frac{3}{4}$,因为$\frac{2}{3}<\frac{3}{4}$,5\frac{2}{3}<5\frac{3}{4}$。

版权声明:本文由 数字独教育 发布,如需转载请注明出处。

本文链接:https://www.shuzidu.com/xuexiziyuan/24026.html

分享给朋友:

“分数比大小50道,如何快速掌握比较技巧?” 的相关文章

电影观后感

电影观后感

《<肖申克的救赎>观后感》 影片基本信息与背景 《肖申克的救赎》改编自斯蒂芬·金的原著小说《丽塔·海华丝与肖申克的救赎》,由弗兰克·德拉邦特执导,蒂姆·罗宾斯、摩根·弗里曼等主演,于1994年上映,这部电影在当年并未引起巨大...

美丽人生观后感

美丽人生观后感

《美丽人生》观后感 影片背景与故事梗概 《美丽人生》是一部由罗伯托·贝尼尼自编自导自演的经典电影,影片的背景设定在二战时期的意大利,故事围绕着犹太青年圭多和儿子约书亚展开,圭多是一个充满幽默和乐观精神的人,他用自己的智慧和勇气追求到了美...

第一范文网

第一范文网

第一范文网是一个提供丰富范文资源的在线平台,它涵盖了众多领域和类型的范文,包括但不限于学生作文、公文写作、演讲稿、简历模板等,无论是学生群体需要完成各类作业、考试作文,还是职场人士撰写商务文件、工作报告等,都能在该网站上找到具有参考价值的范...

五一劳动节手抄报内容

五一劳动节手抄报内容

五一劳动节的由来 国际劳动节起源:1886年5月1日,美国芝加哥的工人举行大罢工,要求改善劳动条件,实行八小时工作制,这次罢工遭到血腥镇压,为纪念这次伟大的工人运动,1889年7月,恩格斯领导的第二国际在巴黎举行代表大会,决定把5月1...

平方根教案

平方根教案

教学目标 知识与技能目标 学生能够理解平方根的概念,掌握平方根的表示方法(√a)。 能说出一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根。 学会用平方运算求某些非负数的平方根,并能进行简单的平方根运算。...

防溺水观后感50字

防溺水观后感50字

防溺水知识学习有感 近日学习防溺水知识,深感其重要性,溺水事故触目惊心,多因野泳、不识水性,我们应牢记安全准则,远离危险水域,掌握自救技能,守护生命安全。 项目 常见溺水原因 野外游泳、不熟悉水性贸然...